

ABN 64 002 841 063

Job No: 14305/11 Our Ref: 14305/11-AA-R3 12 August 2022

Mirvac Homes (NSW) Pty Ltd C/- Calibre Professional Services Pty Ltd

Attention: Mr C Naoum

Dear Sir

re Proposed Pedestrian bridge Stage 1 and Stages 2-4 Station Street, Menangle Report on Geotechnical Investigation

We understand from the email and drawings received on 12 July 2022 that the proposed pedestrian bridge will be moved 2m towards the northern side (Ref. B1849 D102, Rev P1, Prepared by Bridge Design Pty Ltd) from the previously identified location (Ref. B1849 D02, Rev A). In this regard, we are pleased to update our report. The investigation was carried out as per our fee proposal Q14305-10, dated 9 April 2021 and was approved by Mr T Foster of Calibre Group in an email dated 14 April 2021.

Proposed Development

We understand that it is proposed to construct a standalone pedestrian bridge at the above site.

In this regard, a geotechnical investigation was required to determine existing subsurface conditions at the site and provide geotechnical recommendations necessary for the design of the proposed bridge.

Field Work

Field work for the investigation was conducted on 10 and 11 May 2021 and the following was completed:

- Reviewing available geological information relevant to the site.
- OH&S and walkover survey to assess existing site conditions.
- Reviewing services plans obtained from "Dial Before You Dig" to determine locations of services across the site.
- Scanning borehole locations for underground services to ensure that services were not damaged during field work. We engaged a specialist services locator for this purpose.
- Drilling two boreholes (BH1 and BH2) at each abutment location to depths of 14.5m, using a track mounted drilling rig. Boreholes were initially drilled to V/TC bit refusal and then cored to recover rock cores. Engineering logs and borehole locations plan (Drawing No 14305/10-AA2) are attached to the report.

- Conducting Standard Penetration Tests (SPT) at regular depth intervals in the boreholes to assess strength characteristics of sub-surface soils.
- Recovering representative soil and rock samples for visual assessment and laboratory tests (aggressivity and point load strength index).
- Measuring depths to groundwater level or seepage in the drilled boreholes, where encountered.

Field work was supervised by a Field Engineer from this company who was responsible for nominating borehole locations, supervision of in-situ tests, sampling and preparation of field logs.

Regional Geology

Reference to the Geological Map of Wollongong - Port Hacking (scale 1:100,000) indicates that the bedrock at the site belongs to Ashfield Shale and comprises dark grey to black shale and laminite.

Reference to the Soil Landscape Map of Wollongong - Port Hacking (scale 1:100,000) indicates that the landscape at the site belongs to Theresa Park Group, which is characterised by gently undulating slopes, mostly less than 5%, on Tertiary and Quaternary flood plains and terraces of Nepean River south of Cobbitty Creek. Soils in this landscape are highly variable and include poorly structured orange to red silty loam. The landscape is susceptible to localised flooding, seasonal water logging, very high erosion and concentrated flows.

Site Conditions

The site was inspected by an environmental scientist during the fieldwork. The site for the proposed pedestrian bridge consists primarily of the road shoulder and is bordered by rail corridor land with a corridor entrance and steep batter on the west side of the tracks. A guard rail was observed on the north shoulder of the station street bridge side and a vacant shoulder on the eastern side of the tracks.

Subsurface Conditions

Subsurface conditions encountered in the boreholes are detailed in the attached engineering logs and summarised below in Table 1.

BH	Top RL (AHD)	Terminated Depth (m)	AC/Seal (mm)	Roadbase Gravel (mm)	Fill (m)	Natural (m)	Bedrock (m)			
1	91.54	14.5	20	200	0.22 – 1.85	1.85 – 2.3	2.3 -> 14.5			
2	91.76	14.6	20	200	0.22 – 1.0	1.0 – 1.7	1.7 -> 14.6			

Table 1 : Subsurface Conditions

Fill	Silty Clay, low plasticity, grey, with shale gravel
Natural	Silty CLAY, high plasticity, red
Bedrock	SHALE/SILTSTONE, grey, extremely weathered grading to slightly weathered with depth, extremely low strength grading to high strength with depth

Standard Penetration Tests conducted in the boreholes indicated the fill material to be well compacted and natural clayey soils to be stiff to hard in consistency.

Groundwater Conditions

Groundwater/seepage was not encountered to the auger refusal depths of the boreholes. Use of water for coring purposes precluded further measurements. It should be noted that groundwater levels generally vary due to changes in rainfall, temperature and other factors not evident during drilling.

Laboratory Testing

Chemical Tests

Soil samples recovered from the boreholes were tested to determine pH and sulphate and chloride contents, in the NATA accredited laboratory of SGS. The purpose of these tests was to assess soil aggressivity. The results are summarised below (Table 2) and detailed in the attached certificates.

Borehole No	Sample Depth (m)	рН	Sulfate (mg/kg)	Chloride (mg/kg)		
BH1	0.5-0.95	8.8	150	3.0		
BH1	1.5-1.95	6.2	300	23		
BH2	0.5-0.95	8.4	42	2.0		
BH2	1.5-1.85	6.8	180	3.2		

Table 2 : Results of Chemical Tests

Point Load Strength Index

Rock cores obtained from the boreholes were photographed and tested at regular depth intervals for determination of Point Load Strength Index (I_{s50}). The point load strength indices for the rock cores and the assessed rock strengths, in accordance with AS1726 (Standards Australia, 2017), are summarised below.

Borehole	Donth (m)	Diametral	Axial	Assessed Strength			
No	Depth (III)	I _{s(50)} (MPa)	I _{s(50)} (MPa)	Diametral	Axial		
	6.71-6.76	0.11	2.42	Low	High		
	7.81-7.89	0.59	1.29	Medium	High		
	8.62-8.72	0.33	1.01	Medium	High		
	9.6-9.7	0.55	1.30	Medium	High		
BH1	10.3-10.4	0.82	2.77	Medium	High		
	11.0-11.1	0.23	1.72	Low	High		
	12.1-12.2	1.73	3.60	High	Extremely High		
	13.0-13.07	2.08	7.95	High	Extremely High		
	14.2-14.3	0.86	1.77	Medium	High		
	5.87-6.93	0.34	0.82	Medium	Medium		
	6.24-7.30	0.50	1.05	Medium	High		
	7.6-7.75	0.68	0.94	Medium	Medium		
	8.73-8.83	0.71	1.64	Medium	High		
BU3	9.6-9.7	0.96	2.90	Medium	High		
DITZ	10.5-10.6	0.38	1.47	Medium	High		
	11.9-11.20	0.48	2.69	Medium	High		
	12.9-13.0	0.81	2.60	Medium	High		
	13.07-13.17	0.67	1.01	Medium	High		
	14.4-14.55	0.74	0.61	Medium	Medium		

Table 3 : Results of Point Load Strength Index Test

4

14305/11-AA-R3 Station Street, Menangle

It should be noted that Point Load Strength tests could only be carried out on intact (stronger) portions of rock cores. Therefore, strength assessments presented in Table 3 indicate the upper limits of rock strengths.

DISCUSSION AND RECOMMENDATIONS

Rock Classification for Foundation Design

We expect that the proposed pedestrian bridge will be supported on concrete bored piers founded in medium to high strength shale/siltstone bedrock. It is also expected that the footings for the middle bridge piers will be taken well below the railway line.

For the purpose of footing design, the bedrock at the site is classified (Pells, Mostyn, & Walker, Dec 1998) as below:

	Depth Range (m)*				
Assessed Rock Class	BH1	BH2			
Class V Shale/Siltstone	2.3 (RL89.24) - 4.5 (87.04)	1.7 (RL90.06) – 4.5 (87.26)			
Class IV Shale/Siltstone	4.5 (87.04) - 6.3 (85.24)	4.5 (87.26) – 5.7 (86.06)			
Class III Shale/Siltstone or better	6.3 (85.24) -> 14.5 (77.04)	5.7 (86.06) -> 14.64 (77.12)			

Table 4 : Rock Classification for Foundation Design

* Approximate only from existing ground surface

Batter Slopes and Retaining Structures

Cut and fill slopes during and after development works should be battered for stability or retained by engineered retaining structures. The following batter slopes are recommended for stability.

Material	Temporary	Permanent		
Overburden Soils	1.5H:1.0V	2.5H:1.0V		
Class V and IV Shale/Siltstone	1H:1.0V	1.5H:1.0V		
Class III Shale/Siltstone or better	Sub-vertical	Sub-vertical		

Table 5 : Recommended Batter for Cut and Fill Slopes

No surcharge load shall be placed within 1.5m from the crest of the slope.

For long term stability of battered slopes, appropriate protection in the form of vegetation (clayey soils) or shotcreting (shale bedrock) shall be provided.

If battered slopes steeper than those recommended in Table 5 are required, then excavation faces would need to be retained by engineered retaining structures (gravity or anchored).

Active earth pressure distribution on non-anchored retaining walls may be assumed to be triangular and estimated using following equation:

$$p_h = \gamma k H$$

Where,

- ph = Horizontal active pressure (kN/m²)
- γ = Total density of materials to be retained (kN/m³)
- k = Coefficient of earth pressure (K_a or K_0)
- H = Retained height (m)

If retaining structures are anchored or strutted, the pressure distribution on the retaining structure may be assumed to be trapezoidal and estimated as follows:

- p_h is linearly increasing from zero at ground surface (top of retaining wall) to 0.8kγH at depth of 0.25H,
- p_h is constant at 0.8kyH from depth of 0.25H to 0.75H,
- p_h is decreasing from 0.8kyH at depth of 0.75H to zero the base of excavation.

For design of flexible retaining structures where some lateral movement is acceptable, an active earth pressure coefficient (K_a) is recommended. If it is critical to limit the horizontal deformation of a retaining structure, use of an earth pressure coefficient at rest (K_0) is recommended. Recommended earth pressure coefficients for design of retaining structures are presented in Table 6 below.

Retained Material	Unit Weight (kN/m³)	Active Earth Pressure Coefficient (Ka)	Passive Earth Pressure (kPa)	At Rest Earth Pressure Coefficient (K _o)	
Overburden Soils	19	0.35	Ignore	0.5	
Class V and IV Shale/Siltstone	23	0.21	350	0.35	
Class III Shale/Siltstone or better	23	-	1500	-	

Table 6 : Recommended Earth Pressure Parameters

It is reiterated that the excavation faces in shale bedrock should be protected from fretting and erosion by shotcreting, which may be reinforced for long term stability.

The above coefficients are based on the assumptions that the ground level behind the retaining structures is horizontal, and the retained material is effectively drained. Additional earth pressures resulting from surcharge loads (structures, traffic etc.) on retained materials and groundwater pressure should also be allowed for in design of retaining structures.

The design of any retaining structure should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

Subgrade Preparation and Fill Placement

We understand that some filling will be carried out for construction of the ramps for the proposed pedestrian bridge. The following are recommended for subgrade preparation and fill placement.

- Strip existing topsoil and stockpile for possible future use or dispose of the site.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed natural clayey soils and fill to detect potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about 300mm and replace with granular materials or low plasticity clay, compacted as described below. Please note that the fill encountered at the site was generally found to be well compacted.
- Repeat proof rolling of soft spots backfilled with granular materials or low plasticity clay. If the backfilled area shows movement during proof rolling, this office should be contacted for further recommendations.
- Place suitable fill material on the proof rolled surface. The fill should be placed in horizontal layers of 200mm to 250mm maximum loose thickness (depending on the size of equipment) and compacted to achieve a Maximum Dry Density Ratio (MDDR) of 98% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). The fill may comprise crushed sandstone Calibre Professional Services Pty Ltd

or low plasticity clay. Natural soils obtained from excavations within the site may also be used, after removal of unsuitable materials, if any, crushing to sizes finer than 75mm and moisture conditioning.

• Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 2" or better supervision, in accordance with AS3798 (Standards Australia, 2007).

Footings

We expect that the proposed pedestrian bridge will be supported on bored piers founded in medium to high strength shale/siltstone bedrock. The following allowable bearing pressure values are recommended for footing design.

Founding Material	Ultimate End Bearing Pressure (kPa)	Ultimate Shaft Adhesion (kPa)	Allowable End Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)	
Class V Shale/Siltstone	2000	200	700	70	
Class IV Shale/Siltstone	3000	300	1000	100	
Class III Shale/Siltstone or better	9000	900	3000	300	

Table 7 : Recommended Allowable Bearing Pressure

The recommended allowable shaft adhesion against uplift load shall be taken as half of the shaft adhesion for compressive load presented in Table 7.

As depths to bedrock with the recommended allowable bearing pressures could vary across the site, the founding depths of footings to be constructed will also vary. Therefore, an experienced Geotechnical Engineer should confirm allowable bearing pressures at founding levels during construction, on the basis of assessment made during footing excavation or pier hole drilling

Total settlements of bored piers designed for the above recommended allowable bearing pressures are estimated to be about 1% of pier diameter. Differential settlements are estimated to be about half the estimated total settlements. In order to reduce differential settlement, footings should be supported on materials with similar strength and compressibility.

Aggressivity Assessment

Based on Australian Standard AS2159 (Standards Australia, 2009), aggressive classifications for subsurface materials are shown below.

	Iro	n & Steel	Concrete			
рН	H Chloride (ppm) Resistivity ohm.cm		Low Permeability Soil	рН	Sulphate (ppm)	Low Permeability Soil
>5.0	<5,000	>5,000	Non-aggressive	>5.5	<5,000	Non-aggressive
4.0-5.0	5,000-20,000	2,000 - 5,000	Non-aggressive	4.5-5.5	5,000-10,000	Mild
3.0-4.0	20,000 - 50,000	1,000 - 2,000	Mild	4.0-4.5	10,000 - 20,000	Moderate
<3.0	>50,000	<1,000	Moderate	<4.0	>20,000	Severe

Table 8 : Aggressivity Classification

1ppm=1mg/kg

Based on the results shown in Table 2 and above classification, the soils at the site are assessed as nonaggressive to both iron/steel and concrete. Concrete strength and cover for reinforcement of structures in contact with the existing soils at the site shall be based on the above assessment.

Pavement Thickness Design

We understand that as part of the proposed development Station Street and Steven Road will be widened. Based on the subsurface conditions encountered at the site and our previous pavement investigation (Report Ref. : 8866/5-AA-R1, 12 May 2020) a design CBR of 4% can be adopted for pavement thickness design. As per Wollondilly Council design specification, the design traffic loading for Station Street can be taken as 2x10⁶ ESA.

Based on the above design CBR and traffic loading values and as per Austroads Guide (Austroads, 2017), the following pavement is recommended.

Road Name	Asphaltic Concrete (mm)+	Base Course (mm)	Sub-base Course (mm)	Total thickness (mm)	
Station Street and Stevens Road Widening	50 – AC14	150	340	540	

Table 9 : Recommended Pavement

The above pavement depth is valid if the subgrade and pavement materials are compacted to the following Minimum Dry Density Ratios (AS1289 5.4.1) or as per Council's specifications.

Basecourse	98% Modified
Sub-basecourse	98% Modified
Subgrade	100% Standard

The pavement design assumes provision of adequate surface and sub-surface drainage of the pavement and adjacent areas. It is recommended that a sub-surface drainage system is installed, as directed by Council Engineers.

Remarks

Although the bridge will be moved 2m towards the northern side from the previously identified location, it is our assessment that the recommendations provided in this report are still applicable. It should be noted that no major changes in subsurface conditions are expected within 2m distance.

General

Assessment and recommendations presented in this report are based on site observation and information from two (2) boreholes. Although we believe that the sub-surface profile presented in this report is indicative of the general conditions across the site, it is possible that the sub-surface conditions including depth to groundwater level could differ from those encountered in the boreholes. We recommend that this company is contacted for further advice if subsurface materials and groundwater conditions encountered during the construction stage differ from those presented in this report.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

ZIAUDDIN AHMED Senior Associate

Attached Proposed Bridge Location Drawing No 14305/10-AA2 Borehole Location Plan Engineering Borehole Logs, Core Photograph & Explanatory Notes Chemical Test Results

References

Austroads, 2017. *Guide to pavement technology: part 2: pavement structural design,* Sydney: Austroads. Pells, P., Mostyn, G. & Walker, B., Dec 1998. Foundations on Sandstone and Shale in the Sydney Region. *Australian Geomechanics*, pp. 17-29. Standards Australia, 2007. *AS3798-2007 Guidelines on earthworks for commercial and residential developments*. Sydney: SAI Global Limited.

Standards Australia, 2009. AS2159-2009 Piling - Design and installation. Sydney: SAI Global Limited.

Standards Australia, 2017. AS1726-2017 Geotechnical site investigations. Sydney: SAI Global Limited.

200mm on original

100mm on original

THIS DRAWING IS COPYRIGHT BRIDGE DESIGN PTY LTD. THE DRAWING AND THE ORIGINAL DESIGN CONCEPTS CONTAINED THEREIN SWALL NOT BE USED OR REPRODUCED IN ANY FORM OT

1/07/2022 11:36:21 AM

engineering log - borehole

	Client :Calibre Professional Services Pty LtdProject :Proposed Pedestrian BridgeLocation :Station Street, Menangle						ervices Pty Ltd ridge Ile	Job No.: 14305/11 Borehole No.: BH1 Date: 10/05/2021 Logged/Checked by: SS/ZA						
d	rill	moo	del ar	nd m	nount	ting :	Т	rack N	lounted sl	ope :	de	g.	R.L. sı	Irface: 91.54
L	ho	le di	amet	er :	125	n	nm		bearing : c	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle charac colour, secondary and minor compo	teristic, nents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0 -	ŝ		AC/Seal (20mm) Roadbase Gravel (200mm)	ſ				_
		GP				 0.5			FILL: Silty Clay, low plasticity, grey, shale gravel	with				
		GP			N=21 2,10,11									- - -
		GP												
		GP			N=25 11,13,12	-		СН	Silty CLAY, high plasticity, red					– – Red clay in SPT at – 1.85m
		G				2— — — —			SHALE, grey, extremely to distinctly	,				Bedrock
						2.5			weathered, low strength					grey clay seen
					N=R 8/70	3								Shale at bottom of SPT
						3.5 — — — —								
						4 — 								- - -
						4.5 — 			SHALE, grey, distinctly weathered, I medium strength	ow to				-

GEOTECHNIQUE PTY LTD

form no. 002 version 04 - 05/11

engineering log - borehole

	Client : Calibre Professional Project : Proposed Pedestrial Location : Station Street, Mena drill model and mounting : Track							onal Se trian B lenang	ervices Pty Ltd ridge le	Job I Bore Date Logg	No.: 1 hole N : 10/0 ed/Che	4305/ o.: [05/202 cked b	11 3H1 1 9 y: SS/Z	A
6	Irill	mod	del ar	nd m	oun	ting :	Т	rack N	lounted	slope :	de	:g.	R.L. sı	Irface: 91.54
L	ho	le di	amet	er :	125	r	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCF soil type, plasticity or partic colour, secondary and mine	RIPTION cle characteristic, or components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
														-
						5								
						_								_
						_								-
						5.5 —								
						_								-
						_								-
						- o								
L	Dry								Started coring at 6 3m					
						6.5								
						_								-
						_								_
						7								
						_								-
						_								-
						7.5								
						_								_
						_								-
						8 —								
						_								-
						-								_
						8.5								
						-								-
														-
L														

GEOTECHNIQUE PTY LTD

form no. 002 version 04 - 05/11

ſ	(Client	t :	С	Calibre Professional Services Pty Ltd Proposed Pedestrian Bridge					Job No.: 14305/11								
	F	Proje	ct:	P	roposed Pedestrian E	Bridge					E	Bor	eho		lo.: BH1			
I	L	Locat	jie					L	Jate .og	e: ged/	10/0 /Che	cked by : SS/ZA						
ľ	(drill n	nodel	and	mounting :	Track Moun	ted			slo	pe	:	<u> </u>	deg	g. R.L. surface :	91	.54	
I	C	ores	size:		NML	.C			b	eari	ng	:		deg	g. datum :	AF	ID	
ŀ			ن		CORE DESCR	RIPTION									DEFECT DETAILS			
	Ë	kel	of R. ers	c log	nook turno surgiu oko		ering	÷	po	inde	k K		defe	ect	DESCRIPTI	ON		
ŀ	barrel	water Ioss/le	depth in mete	graphi	colour, structure, mino	racteristics, r components.	weathe	streng	St I	reng S(50	th) + ^{VH}	2000	spac (mr ؤ ۋ	n) <u>§ § s</u>	type, inclination, thi planarity, roughness, Specific	kness: coatin Ge	, g. eneral	
I			_		Started coring at 6.3m										F			
t			_		CORE LOSS													
I			6.5		SHALE/SILTSTONE		SW-	M-H							_			
I			_				Fr								6.6m: Is (clay)			
I			_												6.7m: Is (clay) 6.8m: Jo=20°			
I															6.93m: Is (clay)			
															6.98m: ls (clay) - 7.0m: ls (clay)			
I			_															
I			_												7.3m: Jo=45°, pl 7.35m: Cs, Is (clay)			
I			7.5 —												_ 7.46m: Is (clay)			
I														7.6m: Cs, Is (clay)				
I			_								×				F			
I			8												-			
I			U _															
I			_												_ 8.14m: Cs			
I			_												8.4-8.17m: Cs			
ŀ	_		8.5 —												-			
I			_								×							
I			_												8.86m: lo-cu			
I			9 —															
			_					11										
			_															
I			_												-			
			9.5 —								×				-			
			_												-			
			_															
			10												-			
			_															
			_								×				+			
I															-			
			.0.5												-			
L																		

form no. 003 version 03 - 09/10

	Clien	t:	С	alibre Professiona	I Services Pty L	.td					Jo	b l	No	.:	14	4305/11		
	Proje	ct: tion ·	P	roposed Pedestria	an Bridge angle		Date : 10/05/2021											
	Lood		0		ungio						Lo	bgg	ed/	/Ch	ec	ked by : SS/ZA		
	drill r	nodel	and	mounting :	Track Mo	unted			S	lope	e :			de	g.	R.L. surface :	91	.54
	core	size:		Ν	IMLC			k	ea	ring	j :			de	g.	datum :	AH	ID
		Ļ	5	CORE DES	CRIPTION			n	oint	load						DEFECT DETAILS		
₫	evel	of R. ters	ic lo	rock type, grain	characteristics.	ering	ţţ	۳ •	ind	ex ex		c SI	lefe bac	ect ing		DESCRIPTIC	N	
harre	water loss/l	depth in me	graph	colour, structure, n	ninor components.	weath	strenç	EL	اs(5 / ^ل ر	50) ^м н [∨]	и	2000	mr) چ	n) <u> </u>	2	planarity, roughness, o Specific	oatin Ge	, g. eneral
		_													-			
										~						-		
															-			
		-													+			
		_																
	-	11.5 —													┝	-		
		-													-			
		-														_		
		-								>	×				-			
		-													-			
		-																
		12.5 —													+	-		
		-													┝			
		-													-			
											ή				F			
		-													╞			
		_																
		13.5 —														₋ 13.46m: Cs, Is (clay) 13.49m: Cs, Is (clay)		
		-														· · · · · ·		
		-																
																-		
		-								×								
		_																
\mathbf{F}		14.5		Borehole BH1 termina	ated at 14.5m													
- 09/1(_	$\left \right $												F			
ion 03		-	$\left \right $												┢			
3 vers		15														-		
no. 00		-	$\left \right $												╞			
form		_	1												ŀ			

engineering log - borehole

	Client :Calibre Professional Services Pty LtdProject :Proposed Pedestrian BridgeLocation :Station Street, Menangledrill model and mounting :Track Mounted						ervices Pty Ltd Bridge Ile	Job I Bore Date Logg	No.: 1 hole N : 11/(ed/Che	4305/ o.: 05/202 cked b	'11 3H2 21 9 y: SS/Z	ZA		
d	rill	moo	del ar	nd m	nount	ting :	Т	rack N	lounted	slope :	de	eg.	R.L. sı	urface: 91.76
	ho	e di	amet	er:	125	n	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle char colour, secondary and minor com	N racteristic, ponents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						-	2.5		AC/Seal (20mm) Roadbase Gravel (200mm)]				-
		GP				-			FILL: Silty Clay, low plasticity, gre shale gravel	ey, with				
		GP		DS	N=22 9,10,12	0.5								
		G				1		СН	Silty CLAY, high plasticity, red					No discernable layer of grey clay seen –
						 1.5								
				DS	N=R 6,16,21/	_								-
					50	2 — 2 — 2 5 — - 3 — 3 5 — 4 — 4 5 —			SHALE, grey, extremely to distinct weathered, low strength	tly				Bedrock
						4.3			SHALE, grey, distinctly weathered medium strength	d, low to				Slight resistance of auger

GEOTECHNIQUE PTY LTD

form no. 002 version 04 - 05/11

engineering log - borehole

	Client : Calibre Professional Se Project : Proposed Pedestrian B Location : Station Street, Menang drill model and mounting : Track M						ssic des t, M	onal Se trian B lenang	ervices Pty Ltd ridge lle	Job I Bore Date Logg	No.: 1 hole N : 11/0 ed/Che	4305/ o.: 05/202 cked b	11 3H2 1 9 y: SS/Z	A
d	rill	moo	del ar	nd m	noun	ting :	Т	rack N	lounted	slope :	de	eg.	R.L. sı	Irface: 91.76
L	ho	e di	amet	er :	125	n	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or partic colour, secondary and mine	RIPTION cle characteristic, or components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	Dry								Started coring at 5.7m					

GEOTECHNIQUE PTY LTD

form no. 002 version 04 - 05/11

	Clien	t :	С	alibre Professional	Services Pty Lte	d				J	ob N	o. :	14	305/11		
	Proje	ct:	P	roposed Pedestriar	n Bridge		Borehole No. : BH2 Date : 11/05/2021									
	Loca	tion :	5	tation Street, Mena	ngie					L	oqqe	d/Ch	ecł	ked by: SS/ZA		
F	drill r	nodel	and	mounting :	Track Mou	nted			slop	e :	:	de	g.	R.L. surface :	91	.76
	core	size:		NI	MLC			be	aring	g :		de	g.	datum :	A⊦	ID
		Ŀ		CORE DES	CRIPTION			noi	* 100	4			0	DEFECT DETAILS		
₩	vel	of R. ers	c log	rock type, groin a	haraatariatiaa	ering	÷	ir	idex	u [de	fect		DESCRIPTIO	N	
barrel	water Ioss/le	depth in met	graphi	colour, structure, mi	naracterístics, nor components.	weathe	streng	Str Ic	ength s(50) ∟ ^м н	νн	n) 8 9 8 8 9 8	nm) 8 8 8 8 1	00	type, inclination, thick planarity, roughness, c Specific	ness oatin Ge	, g. eneral
		5.5	-	Started coring at 5.7m									F			
		_				SW-	M-H									
		6.5 		SHALE/SILTSTONE		Fr			× × ×					5.8m: Cs, Is (clay) = 20mm 5.85m: Jo=45°, sealed, Is (c 5.86m: Jo=45°, sealed 5.95m: Bp=0°, Is (clay) 5.92m: Bp=20°, Is (clay) 6.02m: Bp=20°, Is (clay) 6.02m: Bp=20°, Is (clay) 6.27m: Bp=0°, Is (clay) 6.46m: Bp=0°, Is (clay) 6.63m: Bp=0°, Is (clay) 6.63m: Bp=0°, Is (clay) 6.63m: Cs, Is (clay) 6.84m: Cs, Is (clay) 6.84m: Cs, Is (clay) 6.92m: Cs, Is (clay) 7.03m: Cs=20mm 7.13m: Cs, Is (clay) 7.43m: Bp=0°, pl, sl, cs 7.45m: Cs 7.5m: Jo=45°, irregular	lay)	
							н		×	×				8.6m: Bp=0°, pl 9.02m: Bp=0° 9.16m: Jo45°, In, Sn (iron) 9.38m: Bp=0° 9.47m: Jo=45°, Ir 9.75m: Bp=0° 9.95m: Bp=0° 10.03m: Cs		

Client :	C	alibre Professiona	al Services Pty Lt	ty Ltd Job No. : 14305/11 Borehole No. : BH2							
Location	יין אין אין איז איז איז איז איז איז איז איז איז איז	tation Street, Men	angle					Date : 11/0	10 DTZ)5/2021		
drill mod	del and	mounting :	Track Mou	inted		s	L lope	: dec	a. R.L. surface	e: 91	1.76
core size	e:	·	IMLC			bea	ring :	de <u>c</u>	g. datum	: Al	HD
		CORE DES	CRIPTION			ne:			DEFECT DETAIL	_S	
barrel lift water loss/level depth of R.I	in meters graphic log	rock type, grain colour, structure, r	characteristics, ninor components.	weathering	strength	point ind strer IS(load ex ngth 50) ^M _H ^{VH}	defect spacing (mm) ରୁଁ ତୁଁ ତୁ ତୁ ତୁ ତୁ	DESCRIF type, inclination planarity, roughn Specific	PTION , thickness ess, coatin G	s, ng. jeneral
10.5 11 11.5 12 12.5 13 13.5 14.5							X X X X X X X X X X X X X X X X X X X		 10.48m: ls (clay) 10.75m: Bp=0° 10.75m: Bp=0° 12.85m: Jo=45°, lr 13.05m: Bp=0° 13.19m: Clay band = 1 13.52m: Bp=0° 13.72m: Cs 13.72m: Cs 13.74m: Jo=90°, lr 	I0mm	

Project : Proposed Pedestrian Bridge Borehole No. : BH2 Location : Station Street, Menangle Date : 11/05/2021 drill model and mounting : Track Mounted Slope : deg. core size: NMLC bearing : deg. datum : Al uijout of the state of t	Job No. : 14305/11	Calibre Professional Services Pty Ltd	Client :			
Location : Station Street, Menangle Date : 11/05/2021 Logged/Checked by : SS/ZA drill model and mounting : Track Mounted slope : deg. R.L. surface : 91 core size: NMLC bearing : deg. datum : Ai bearing : deg. datum : Ai DEFECT DETAILS rock type, grain characteristics, colour, structure, minor components. borehole BH2 terminated at 14.64m 15	Borehole No. : BH2		Proposed Pedestrian Bridge	P	Project :	1
Loggevolected by 1: 502A drill model and mounting : Track Mounted slope : deg. R.L. surface : 91 core size: NMLC bearing : deg. datum : Al u o o o o o i o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o o o i o o o o <tho< th=""> o i <tho< th=""><th>Date: 11/05/2021</th><th></th><th>Station Street, Menangle</th><th>: S</th><th>Location :</th><th></th></tho<></tho<>	Date: 11/05/2021		Station Street, Menangle	: S	Location :	
core size: NMLC bearing: deg. tal. sumder in a structure. index index index index DEFECT DETAILS index index index index index index	De deg Bl surface : 91.76	d	mounting : Track Mounter	and	drill model	
Virtue Description 1 1 1 1 </th <th>a: dea datum : AHD</th> <th>u</th> <th>NMI C</th> <th>, and</th> <th>core size:</th> <th></th>	a: dea datum : AHD	u	NMI C	, and	core size:	
Image: second						_
Image: Second	d defect DESCRIPTION	bu	CORE DESCRIPTION	log	° R °	
Image: State in the conduction of the components. Image: State in the com	spacing (mm) type, inclination, thickness,	ngth	rock type, grain characteristics,	ohic	/leve /leve th of	el lif
Borehole BH2 terminated at 14.64m	VH § § § § § g g g VH § § § § g g g g Specific General	stre	colour, structure, minor components.	grap	wate loss depi in m	barr
			Borehole BH2 terminated at 14.64m		_	
				_		
				-	15	
				_		
				-		
					15.5	
				-		
				-	-	
					16	
				_		
				-	-	
				_	16.5	
				-		
				-		
					17	
				_		
				-	-	
					17.5	
				_	-	
				-		
				_	18	
				-		
				_		
				-	18.5	1
]		1
				_	–	1
				_	-	1
					19 —	1
				-	-	

form no. 003 version 03 - 09/10

Log Column	Symbol/Value		Description		
Drilling Method	V-bit		Hardened stee	L'\/' shaped bit attached to auger	
Drining Method	TC-bit		Tungsten Carb	ide bit attached to auger	
	RR		Tricone (Rock	Roller) bit	
	DB		Drag bit	,	
	BB		Blade bit		
Groundwater	Dry		Groundwater n	ot encountered to the drilled or auger	refusal depth
	_		Groundwater le	evel at depths shown on log	
			Groundwater s	eepage at depths shown on log	
Environment Sample	GP		Glass bottle an	d plastic bag sample over depths show	wn on log
	G		Glass bottle sa	mple over depths shown on log	
PID Reading	100		Plastic bag sar PID reading in	ppm	
Geotechnical Sample	DS		Disturbed Sma	Il bag sample over depths shown on lo	pq
	DB		Disturbed Bulk	sample over depths shown on log	0
	U ₅₀		Undisturbed 50	mm tube sample over depths shown o	on log
Field Test	N=10		Standard Pene	tration Test (SPT) 'N' value. Individua	I numbers indicate blows per
	3,5,5		150mm penetra	ation.	
	N=R		'R' represents	refusal to penetration in hard/very den	se soils or in cobbles or
	10,15/100		boulders.		
			The first number	er represents10 blows for 150mm pene	etration whereas the second
			number repres	ents 15 blows for 100mm penetration	where SPT met refusal
	DOD/DOD	-	D : 0		
	DCP/PSP	5	Dynamic Cone	Penetration (DCP) or Perth Sand Pen	etrometer (PSP). Each
		6	10mm penetrat	tion in hard/very dense soils or in grav	els or boulders
		R/10	ronni ponotici		
Classification	GP		Poorly Graded	GRAVEL	
	GW		Well graded GI	RAVEL	
	GM		Silty GRAVEL		
	GC		Clayey GRAVE		
	SP		Poorly graded	SAND	
	SM		Silty SAND		
	SC		Clayey SAND		
	ML		SILT / Sandy S	ILT / clayey SILT, low plasticity	
	MI		SILT / Sandy S	SILT / clayey SILT, medium plasticity	
	MH		SILT / Sandy S	GLT / clayey SILT, high plasticity	
			CLAY / Silty CL	AY / Sandy CLAY / Gravelly CLAY, IC	pedium plasticity
	СН		CLAY / Silty Cl	_AY / Sandy CLAY / Gravelly CLAY, h	igh plasticity
Moisture Condition			, , , , , , , , , , , , , , , , , , ,		
Cohesive soils	M <pl< td=""><td></td><td>Moisture conte</td><td>nt less than Plastic Limit</td><td></td></pl<>		Moisture conte	nt less than Plastic Limit	
	M=PL		Moisture conte	nt equal to Plastic Limit	
	M>PL		woisture conte	ni to be greater than Plastic Limit	
Cohesionless soils	D		Dry -	Runs freely through hand	
	М		Moist -	Tends to cohere	
	W		Wet -	Tends to cohere	
Consistency	Ve		Term	Undrained shear strength,	Hand Penetrometer
COLIESIVE SOILS	S		Very Soft	υ_u (κ۳α) <12	(QU) ~25
	F		Soft	>12 & ≤25	25 – 50
	St		Firm	>25 & ≤50	50 - 100
	VSt		Stiff	>50 & ≤100	100 – 200
	Н		Very Stiff	>100 & ≤200	200 - 400
Density Index				>200 Density Index In (%)	SPT (N' (blows/300mm)
Cohesionless soils	VL		Very Loose	≤15	≤5 ≤5
	L		Loose	>15 & ≤35	>5 & ≤10
	М		Medium Dense	e >35 & ≤65	>10 & ≤30
	D		Dense	>65 & ≤85	>30 & ≤50
Hand Penetromotor	100		Very Dense	>00 moressive strength (g) in kPa datarmi	>0U
	200		penetrometer	at depths shown on log	neu using pockel
Remarks			Geological orio	in of soils	
	Residual		Residual soils	above bedrock	
	Alluvium		River deposited	d Alluvial soils	
	Colluvial		Gravity deposit	ed Colluvial soils	
	Aeolian Marine		Wind deposited	a Aeoiian Soiis	

GEOTECHNIQUE PTY LTD

AS1726 : 2017– Unified Soil Classification System

Major D	Divisions	Particle size (mm)	Group Symbol	Typical Names	Field Identi	fications Sand a	nd Gravels				Laboratory classificat	ion		
	BOULDERS	>200							% Fines (2)	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes	
OVERSIZE	COBBLES	63						,st						
		Coorre 10	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	Wide range in g of all intermedia coarse grains, n	rain size and subs te sizes, not enou o dry strength	tantial amounts gh fines to bind	r Divisior	≤5	-	>4	between 1 and 3	1. Identify lines by the method given for fine	
	GRAVEL (more than half of	Coarse 19	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	Predominantly of some intermedia fines to bind coa	one size or range o ate sizes missing, arse grains, no dry	of sizes with not enough strength	n in 'Majo	≤5	-	Fails to com	ply with above	grained soils	
	larger than 2.36mm)	Modium 6 7	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	iteria give	≥12	Below 'A' line or I _p <4			2. Borderline classifications occur when the	
COARSE GRAINED SOIL (more than 65% of		Fine 2.26	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	g to the cr	≥12	Above 'A' line or I _p >7	-	-	fines (fraction smaller than 0.075mm size) is	
soil excluding oversize fraction is greater than 0.075mm)		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines	Wide range in g of all intermedia coarse grains, n	rain size and subs te sizes, not enou o dry strength	tantial amounts gh fines to bind	accordin	≤5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications	
	SAND (more than half of	Medium 0.21	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly of some intermedia fines to bind coa	one size or range o ate sizes missing, arse grains, no dry	of sizes with not enough strength	of fractions	≤5	-	Fails to com	ply with above	require the use of dual symbols e.g. SP-SM, GW-	
	coarse fraction is smaller than 2.36mm)	initial and the left	SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification c	≥12	Below 'A' line or <i>I_p</i> <4	-	-		
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	vith excess of plastic fines, Iry strength		n for class	≥12	Above 'A' line of I _p >7	-	-		
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Slow to	Toughness Low	ng 63mn		Below 'A'		1		
	SILT (0.075mm to 0.0 CLAY (<0.002mm)	002mm) &	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	rapid None to very slow	Medium	aterial passi	um M	line Above 'A' line	60 <u>AIIIIIIIIIII</u>			
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	ation of me	sing 0.075	Below 'A' line	50 50 <u><u><u>*</u></u> 40</u>		1100 200	
SOIL (more than 35% of soil excluding oversize fraction is less than			MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	None to slow	Low to medium	the grads	1 35% pas	Below 'A' line	DE LE LA INDEX	Cl or Ol	20	
0.075mm)	SILT (0.075mm to 0.0 CLAY (<0.002mm) Liquid Limit>50%	002mm) &	СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	More thar	Above 'A' line		DL MH or 0	H	
		o Organic clays of medium to high plasticity, organic silts Medium to high None to very slow Low to medium		Low to medium			Below 'A' line		ML or DL 0 40 50 60 70 LIQUID LIMIT W _L , %	0 80 90 100				
	HIGHLY ORGANIC SOILS		Pt (1) Peat and highly organic soils Identified by colour, odour, spongy feel and generally by fibrous texture				y feel and		Effervesce	s with H ₂ O ₂	1	>4 between 1 and 3 1. Identify lines by the method given for fine grained soils Fails to comply with above 2. Borderline classifications occur when the percentage of fines (fraction smaller than 0.75mm size) is greater than 5% and less than 12%. Borderline classifications edited by the method given of the set of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the percentage of fines (fraction smaller than 0.75mm size) is greater than 5% and less than 12%. Borderline classifications edited by the set of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC Image: Specific classifications occur when the use of dual symbols e.g. SP-SM, GW-GC		

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol / Abbreviation	Description		
Core Size		Nominal Core Size (mm	n)	
	NQ NMLC	47 52		
	HQ	63		
Water Loss		Complete water loss		
	\longrightarrow	Partial water loss		
Weathering (AS1726:2017)	RS	Residual Soil	Material is weathered to such	an extent that it has soil
			properties. Mass structure and of original rock are no longer v been significantly transported	material texture and fabric isible, but the soil has not
	XW	Extremely Weathered	Material is weathered to such properties. Mass structure and of original rock are still visible	an extent that it has soil material texture and fabric
	HW	Highly Weathered	The whole of the rock material iron staining or bleaching to the the original rock is not recogr significantly changed by wea minerals have weathered to cla be increased by leaching, or r deposition of weathering product	is discoloured, usually by e extent that the colour of nizable. Rock strength is tthering. Some primary ay minerals. Porosity may nay be decreased due to ts in pores.
	MW	Moderately Weathered	The whole of the rock material iron staining or bleaching to the the original rock is not recogniz change of strength from fresh ro	is discoloured, usually by e extent that the colour of able, but shows little or no ick
	SW	Slightly Weathered	Rock is partially discoloured v along joints but shows little or r fresh rock	with staining or bleaching no change in strength from
	FR	Fresh	Rock shows no sign of deminerals or colour changes	composition of individual
		Note : Where it is not Distinctly Weathered (L changed by weatherit ironstaining. Porosity deposition of weatherin	possible to distinguish between H W) may be used. DW is defined ng. The rock may be highly may be increased by leaching, g products in pores'	HW and MW rock the term d as 'Rock strength usually discoloured, usually by or may be decreased by
Strength (AS1726:2017)	M	Term	Point Load Strength Index (I _{s50} ,	MPa)
	L	Low	>0.1 ≤0.3	
	M	Medium	>0.3 ≤1	
	H VH	High Very High	>1 ≤3 >3 ≤10	
	EH	Extremely High	>10	-
Defect Spacing		Description Extremely closely space	he	spacing (mm) <20
		Very closely spaced		20 to 60
		Closely spaced		60 to 200 200 to 600
		Widely spaced		600 to 2000
		Very widely spaced	d	2000 to 6000
Defect Description (AS1726:2017)			d	20000
Туре	Dt	De atia a		
	Jo	Joint		
	Sh	Sheared Surface		
	Sz Ss	Sheared Zone Sheared Seam		
	Cs	Crushed Seam		
	ls Fws	Infilled Seam Extremely Weathered S	leam	
	Ews	Exitencity weathered e	oum	
Macro-surface geometry	St	Stepped		
	Un	Undulating		
	lr D	Irregular		
		ridildi		
Micro-surface geometry	Vro	Very Rough		
	Sm	Smooth		
	Po	Polished		
	SI	Slickensided		
Coating or infilling	cn	clean		
	sn	stained		
	cg	coating		

Grain Size mm			Bedded rocks (mostly sedimentary)									
More than 20	20	Gr. De	ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock		
	6	RUD	PACEOUS	CONGLOMERATE Rounded boulders, cob cemented in a finer mat Breccia Irregular rock fragments	bles and gravel trix s in a finer matrix		bed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite	
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grains, commonly cemented by clay, calcite or iron minerals Quartzite Quartz grains and siliceous cement Arkose Many feldspar grains Greywacke Many rock chips			LIMESTONE and DC (undifferentiat	Calcarenite		Cemented volcanic ash	Gypsum	
	0.002 Less than 0.002	ARGIL	LACEOUS	MUDSTONE SILTSTONE MUDSTONE SILTSTONE Mostly silt SHALE CLAYSTONE Fissile Mostly clay		Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF		
Amorpho crypto-cry	us or vstalline			Flint: occurs as hands o Chert: occurs as nodule	of nodules in the cha es and beds in limes	lk tone and o	calcareou	s sandstone			COAL LIGNITE	
				Granular cemented – ex	xcept amorphous roo	cks						
	SILICEOUS				CALCAREOUS				SILICEOUS	CARBONACEOUS		
SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than mar specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic r Calcareous rocks contain calcite (calcium carbonate) which effervesces with dilute hydroch						any Igneous rocks. Bedding c rocks derived from them, co ochloric acid	may not show in hand ntain fossils					

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

Obviously for	liated rocks (mostly metamorphic)		Rocks with	Grain size (mm)				
Grain size description			Grain size description	Pe	egmatite		Pyrosenite	More than 20
	CNEISS	MARBLE			1	_	Poridorito	20
	Well developed but often widely	QUARTZITE		GRANITE	Diorite	GABBRO	Fendonie	
	schistose bands							6
COARSE		Granulite	COARSE	These rocks are phorphyritic and for example, as	e sometimes I are then described, porphyritic granite			
	Migmatite	HORNEELS						
	and gneisses				-			2
	SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
MEDINA				These rocks are	e sometimes			
MEDIUM		Serpenune MEDIOM		as porphyries	are then described	Dolerite		0.2
								0.06
	PHYLLITE Slightly undulose foliation; sometimes 'spotted'		FINE	RHYOLITE	ANDESITE	DACALT		0.002
FINE	SLATE Well developed plane cleavage (foliation)		FINE	These rocks are phorphyritic and as porphyries	sometimes are then described	BASALI		Less than 0.002
	Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
CRYSTALLIN	E			Pale<			>Dark	
SILICEOUS		Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
METAMORPHIC ROCKS Most metamorphic rocks are distinguished by foliation which may impart fissility. Foliation in gneisses is best observed in outcrop. Non- foliated metamorphics are difficult to recognize except by association. Any rock baked by contact metamorphism is described as 'homfels' and is generally somewhat stronger than the parent rock Most fresh metamorphic rocks are strong although perhaps fissile		IGNEOUS RC Composed of Mode of occu	IGNEOUS ROCKS Composed of closely interlocking mineral grains. Strong when fresh; not porous Mode of occurrence : 1 Batholith; 2 Laccoliths; 3 Sills; 4 Dykes; 5 Lava Flows; 6 Veins					

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact Client Address	Ziauddin Ahmed Geotechnique	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental					
Telephone Facsimile Email		Telephone Facsimile Email						
Project Order Number Samples	14305/11 Station Street, Menangle Park (Not specified) 4	SGS Reference Date Received Date Reported	SE219533 R0 12/5/2021 19/5/2021					

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES -

ion

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Soluble Anions (1:5) in Soil/Solids by Ion Chromatography [AN245] Tested: 13/5/2021

			BH1	BH1	BH2	BH2
			SOIL	SOIL	SOIL	SOIL
			0.5-0.95	1.5-1.95	0.5-0.95	1.5-1.85
			10/5/2021	10/5/2021	11/5/2021	11/5/2021
PARAMETER	UOM	LOR	SE219533.001	SE219533.002	SE219533.003	SE219533.004
Chloride	mg/kg	0.25	3.0	23	2.0	3.2
Sulfate	mg/kg	5	150	300	42	180

pH in soil (1:5) [AN101] Tested: 13/5/2021

			BH1	BH1	BH2	BH2
			SOIL	SOIL	SOIL	SOIL
			0.5-0.95	1.5-1.95	0.5-0.95	1.5-1.85
			10/5/2021	10/5/2021	11/5/2021	11/5/2021
PARAMETER	UOM	LOR	SE219533.001	SE219533.002	SE219533.003	SE219533.004
pH	pH Units	0.1	8.8	6.2	8.4	6.8

Moisture Content [AN002] Tested: 18/5/2021

			BH1	BH1	BH2	BH2
			SOII	SOII	5011	5011
			0.5-0.95	1.5-1.95	0.5-0.95	1.5-1.85
			10/5/2021	10/5/2021	11/5/2021	11/5/2021
PARAMETER	UOM	LOR	SE219533.001	SE219533.002	SE219533.003	SE219533.004
% Moisture	%w/w	1	4.7	15.0	8.2	16.1

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAILS	s
Contact Client Address	Ziauddin Ahmed Geotechnique P.O. Box 880 NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	ziauddin@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	14305/11 Station Street, Menangle Park	SGS Reference	SE219533 R0
Order Number	(Not specified)	Date Received	12 May 2021
Samples	4	Date Reported	19 May 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 859 Australia f +61 2 859

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Moisture Content	sture Content Method: ME-(AU)-[ENV]AN002									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1	SE219533.001	LB224782	10 May 2021	12 May 2021	24 May 2021	18 May 2021	23 May 2021	19 May 2021		
BH1	SE219533.002	LB224782	10 May 2021	12 May 2021	24 May 2021	18 May 2021	23 May 2021	19 May 2021		
BH2	SE219533.003	LB224782	11 May 2021	12 May 2021	25 May 2021	18 May 2021	23 May 2021	19 May 2021		
BH2	SE219533.004	LB224782	11 May 2021	12 May 2021	25 May 2021	18 May 2021	23 May 2021	19 May 2021		
pH in soil (1:5) Method: ME-(AU)-[ENV]AN101										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1	SE219533.001	LB224550	10 May 2021	12 May 2021	17 May 2021	13 May 2021	14 May 2021	13 May 2021		
BH1	SE219533.002	LB224550	10 May 2021	12 May 2021	17 May 2021	13 May 2021	14 May 2021	13 May 2021		
BH2	SE219533.003	LB224550	11 May 2021	12 May 2021	18 May 2021	13 May 2021	14 May 2021	13 May 2021		
BH2	SE219533.004	LB224550	11 May 2021	12 May 2021	18 May 2021	13 May 2021	14 May 2021	13 May 2021		
Soluble Anions (1:5) in Soil/Solid	is by Ion Chromato	graphy					Method: I	ME-(AU)-[ENV]AN245		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1	SE219533.001	LB224549	10 May 2021	12 May 2021	17 May 2021	13 May 2021	10 Jun 2021	19 May 2021		
BH1	SE219533.002	LB224549	10 May 2021	12 May 2021	17 May 2021	13 May 2021	10 Jun 2021	19 May 2021		
BH2	SE219533.003	LB224549	11 May 2021	12 May 2021	18 May 2021	13 May 2021	10 Jun 2021	19 May 2021		
BH2	SE219533.004	LB224549	11 May 2021	12 May 2021	18 May 2021	13 May 2021	10 Jun 2021	19 May 2021		

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE219533 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Soluble Anions (1:5) in Soil/Solids by Ion Chromatography			Meth	od: ME-(AU)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result
LB224549.001	Chloride	mg/kg	0.25	<0.25
	Sulfate	ma/ka	5	<5.0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Moisture Content

Moisture Content							od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE219531.006	LB224782.011	% Moisture	%w/w	1	16.7	20.2	35	19
SE219533.003	LB224782.022	% Moisture	%w/w	1	8.2	9.0	42	10
SE219687.001	LB224782.025	% Moisture	%w/w	1	3.1	3.1	62	1

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

pH in soil (1:5)					I	Nethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB224550.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100

Soluble Anions (1:5) in Soil/Solids by Ion Chromatography

Soluble Anions (1:5) in Soil/Solids by				N	lethod: ME-(A	U)-[ENV]AN245	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB224549.002	Chloride	mg/kg	0.25	96	100	70 - 130	96
	Sulfate	mg/kg	5	96	100	70 - 130	96

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ¹ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Laboratory Test Request / Chain of Custody Record

							Tel: (02) 4722 270	00								
Lemko F	lace				РО	Box 880	Fax: (02) 4722 61	61					D .			
PENRIT	H NSW 2750			PENR	ITH NS	W 2751	email. info@geote	ch.com.au	1		·		Page		01	1
TO:	SGS ENVIRON	MENTAL SERVI	CES					Samplin	g By:	SS		Job No:	14305/11			
	UNIT 16	DEET										Desirat	Deserved		Daidea	
	33 MADDOX ST	REEI										Project:	Proposed Pe	edesinan	Bridge	
	ALEXANDRIA	N3W 2015						1								
рн.	02 8594 0400				FAX:	02 8594	0499	Project	Aanager:			Location:	Station Stree	et. Menai	ngle Park	
ATTN:	MS EMILY YIN							,							- <u>-</u>	
		Sampling detail	ls		Samp	le type		· · · · · ·		••						
	Location								Re	esults re	equired	by:				
		Depth (m)	Date	lime	Sol	water										
				·	+	+ +		T		T	T	1	1	<u> </u>		KEEP
							pH, sulphate & chloride					i i				SAMPLE
	BH1	0.5 - 0.95	10/05/2021				√				I	Į	1			YES
	BH1	1.5 - 1.95	10/05/2021				✓					Curd man	606			YES
	BH2	0 5 - 0.95	11/05/2021							~	05 113	syuney	LUL			YES
	BH2	1.5 - 1.85	11/05/2021				√				SE21	9527	2			YES
												JJJ	,			
											HARIANA KANA DINA DINA	lê solê lê sevên heroe e	A A UNA DEALEMENT (INCOLOR)			
											LUMAN AR MANA					
								_								
												l .	1 _	- I		
			_													
Relinquished by							Received by									
Name Signature		e		Date	te Name		Signature	nature Date								
Ļ	Ziauddin Ahn	ned		Ziauddin Ah	med		12/05/2021	17.00	1 S L V	<u> </u>		\sim		12.5	· 2/	
Legend:					1100	()		DOD	0.4		((* - k)	• D 0 T		° ≆ an ala l	1*/2
IWG	water sample, g	giass bottle			056	Unaistur	bed soil sample (glass jar)	DSP	Disturbed	i soli sample	e (smail plas	lic bag)	Purge & Tr	ар	- mole F	т допле
WP	Water sample, p	plastic bottle			DSG	Disturbe	d soil sample (glass jar)		Test requi	iired			# Geotechni	que Scre	en	

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	S	LABORATORY DETA	ILS
Contact	Ziauddin Ahmed	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	ziauddin@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	14305/11 Station Street, Menangle Park (Not specified) 4	Samples Received Report Due SGS Reference	Wed 12/5/2021 Wed 19/5/2021 SE219533

SUBMISSION DETAILS

This is to confirm that 4 samples were received on Wednesday 12/5/2021. Results are expected to be ready by COB Wednesday 19/5/2021. Please quote SGS reference SE219533 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes Client Yes 12/5/2021 Yes 22.0°C Standard

Complete documentation received Yes Sample cooling method None Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

4 Soil COC N/A Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

SUMMARY OF ANALYSIS

No.	Sample ID	Moisture Content	pH in soil (1:5)	Soluble Anions (1:5) in Soil/Solids by Ion
001	BH1 0.5-0.95	1	1	2
002	BH1 1.5-1.95	1	1	2
003	BH2 0.5-0.95	1	1	2
004	BH2 1.5-1.85	1	1	2

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project 14305/11 Station Street, Menangle Park

0 11	KEY TO SYMBOLS					
Strata	Description symbols					
	Paving					
	Gravel					
	Fill					
	Silty clay					
	Shale					
	Blank					
	Description not given for: ">I"					
Misc. S	Symbols					
×	Description not given for: "X"					
Notes:						
1. Explo 4-inc	 Exploratory borings were drilled on 11/05/2021 using a 4-inch diameter continuous flight power auger. 					
2. No free water was encountered at the time of drilling or when re-checked the following day.						
3. Boring locations were taped from existing features and elevations extrapolated from the final design schematic plan.						
4. These recon	4. These logs are subject to the limitations, conclusions, and recommendations in this report.					
5. Resul on th	5. Results of tests conducted on samples recovered are reported on the logs.					